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Abstract
Non-anisotropic free energy is considered which under minimization yields two magnetic
phases: a conical spin density wave and a low temperature conical cycloid. Using equations of
motion, the excitation spectrum is studied. Knowing the nature of these excitations, the
dielectric function as well as the fluctuation specific heat is computed and compared with the
experimental spectrum. Due to the electromagnon going soft, the dielectric function (imaginary
part) as well as the specific heat capacity show peaks at the temperature where ferroelectricity
appears in the system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There has been a renewal of interest recently in multiferroics,
i.e. a class of materials where long range ferroelectric as
well as magnetic order coexist together, due to their potential
technological applications, such as in multi-state memory
devices, magnetically/electrically switchable optical devices,
etc. Most of the multiferroics discovered recently show the
coexistence of a spatially modulated magnetic order and a
uniform polarization, which is induced by the broken inversion
symmetry due to the modulated magnetism [1–7]. Since such
a polarization is inherently of magnetic origin, an unusual
magnetoelectric (ME) effect appears which shows an ability
to tune polarization by the application of a magnetic field.
Among these exciting classes of multiferroics, the cubic spinel
oxide CoCr2O4 is most unusual in the sense that it not
only displays uniform polarization and spatially modulated
magnetism but also uniform magnetization in the conical
cycloid state [8, 9]. The most appealing phenomenon of
this material is that one can tune polarization by the uniform
component of magnetization by application of a magnetic field
of nearly 0.5 T. This question has been addressed by Zhang
et al [10, 11] in a phenomenological Landau theory where they
considered a spin rotational invariant free energy.

The crystal structure of CoCr2O4 is a cubic normal spinel,
in which magnetic Co2+ ions occupy the A (8a) sites and
Cr3+ ions the B (16d) sites [12, 13] of AB2O4. It enters
into a ferrimagnetic state at T = Tc = 93 K, but in

our formulation we consider only the ferromagnetic (FM)
component of the magnetization. With further lowering the
temperature, the compound undergoes a transition to conical
spin states, i.e. a uniform plus transverse spiral spin state, with
an incommensurate propagation vector of (q q 0) (q ≈ 0.63)
at 26 K. The helical modulation of the magnetization is in a
plane transverse to the uniform component. Such a state can
be described by an order parameter,

�M = m1ê1 cos(�q · �r) + m2ê2 sin(�q · �r) + m3ê3, (1)

where {êi} form an orthonormal triad. When the pitch
vector �q is normal to the rotational components, the rotating
components form a ‘conventional helix’. When �q lies in the
plane of the rotating components then, for �m3 = 0, it is
an ‘ordinary cycloid’ otherwise it is called for �m3 �= 0 a
conical cycloid state. The latter magnetic modulation has been
observed in CoCr2O4 at low temperature T < 26 K. In the low
temperature phase (below 26 K), the polar order appears and
since it is coupled to spatially modulated magnetism, it would
be interesting to understand the associated collective modes
in the system. In this paper, we precisely address this issue
in the framework of the phenomenological Ginzburg–Landau
approach. We develop this in a rotationally invariant way
and show that multiferroicity occurs in this formulation even
without easy-plane spin and easy-plane lattice anisotropies.
This is in accordance with the material CoCr2O4 where the
cubic symmetry forbids easy-plane spin and easy-plane lattice
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anisotropies. Using the equation of motion and Fourier
decomposition, we study the excitation spectrum, dispersion
of the modes, and dielectric susceptibility as well as the
fluctuation induced specific heat in this system.

2. Theoretical framework

Much effort has been devoted to understanding the origin
of magnetically induced ferroelectricity [14] and it is still
under debate. The microscopic models used to address
multiferroicity are based on the theory of spin current [15],
spin–orbit coupling [16], etc, whereas the symmetry based
phenomenological approach deals with constructing a free
energy which takes into account the coupling between
ferroelectric and magnetic orders [17]. This is mostly done by
introducing a term in the free energy of type ( �P ·( �M × �∇× �M))

to lowest order. This yields a nonzero polarization �P which
can be expressed as P ∝ M1 M2(ê3 × �q). Thus �P becomes
normal to both �q and ê3. Since in the cycloid state �q ⊥ ê3,
�P becomes nonzero. This was precisely done by Zhang et al

[10, 11] where they considered a spin rotational invariant free
energy. They predicted that a second-order phase transition
from ferromagnet (FM) to conical cycloid (CC) state occurred
through an intervening conical longitudinal or transverse spin
density wave state, even though the direct FM–CC transition
was first order. We, in what follows, consider only the conical
spin density wave (CSDW)–CC transition where the CC phase
is characterized by a polarization along the b-axis. Thus, based
on the symmetry, we consider a Landau free energy as

F =
∫

f d3r (2)

where

f = a

2
�M2 + u

4
�M4 + γ

2
( �∇ · �M)2 + γ1

2
( �∇ × �M)2

+ α

2
( �∇2 �M)2 + b

2
�P2 − ν �P · ( �M × �∇ × �M). (3)

In constructing the free energy, the details of the unit cell
for CoCr2O4 have not been taken into account. Here, the
parameters u, b, and γ1 are positive [11]. The parameters
a = a0(T − T0), γ = γ0(T − TN), and α = α0(T − TN)

have been introduced to obtain the required magnetic phases in
the system. Here γ < 0 and α > 0 below TN (α0: − ve) and
T0 > TN (T0 is some reference temperature below which M3

becomes nonzero). The parameter ν represents the coupling
between the ferroelectricity and the magnetization. It should
be noted here that the above free energy is considered in
order to explain the observed low temperature properties of the
cubic spinel CoCr2O4. Since this material lacks spin/lattice
anisotropies, we artificially employ coupling such as γ, γ1, etc
in the free energy to obtain the required phases. This can be
justified by writing the term |∇M|2 = (∇ · M)2 + |∇ × M|2+
an unimportant surface term. The equivalence of γ and γ1

will make the free energy rotationally invariant. We introduce
a small difference between γ and γ1 due to the smallness
of spin–orbit coupling. The effects of competing magnetic
interactions which are present in the multiferroic systems are
responsible for the modulation of M which are embodied in

γ and γ1. The specific temperature dependence gives rise to
the required magnetic phases in the formulation. Considering
the equilibrium magnetic states in CoCr2O4 to be Mx0 =
M1 cos kx , My0 = M2 sin kx , and Mz0 = M3, the above free
energy is minimized with respect to the order parameters M1,
M2, M3, Py , and the modulation vector k. Thus, one finds the
CSDW (I) and the CC(II) phases which are given as follows:

I:
⎧⎨
⎩

M1 = 0; M2 = 0; P = 0;
M2

3 = −a

u

(4)

II:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2 = 0; P = 0;
M2

3 = −1

u
(a − 2γ k2 + 2αk4)

M2
1 = −4

u
(γ k2 + αk4) = γ 2

0

uα0
(T − TN)

k2 = −3γ

7α

(5)

III:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2
3 = −1

u
(a − 2γ k2 − 2αk4)

M2
1 = −1

2u
[(7γ k2 − γ1k2 + 6αk4)

+ 2k2ν2

ub
(5γ1k2 + γ k2 + 6αk4)]

M2
2 = −3

2u
[(γ k2 + γ1k2 + 2αk4)

− 2k2ν2

ub
(3γ k2 − γ1k2 + 2αk4)]

= 9γ 2
0

48uα0

(
1 + 30k2ν2

ub

)
(T − Tl)

Py = νkM1 M2/b,

(6)

where Tl = TN − 7γ1

γ0
(1 − 32k2ν2

ub ). In obtaining such a phase
diagram, we assumed the magnetoelectric coupling to be weak,
that is ν2k2

ub � 1. The transition temperature TN and Tl are

related as, Tl = TN − 7γ1

γ0
(1 − 32k2ν2

ub ) such that Tl < TN.
Thus, the above minimization scheme yields a phase diagram
where on lowering T , one obtains the CSDW phase below TN

and on further lowering (below Tl), it enters into the conical
cycloidal magnetic phase. The ferroelectricity of magnetic
origin appears below Tl .

Since the system under consideration is ME coupled, the
excitations in such a system will be coupled magnetic and
lattice modes. This has been analyzed using the equations of
motion method. In order to do this, we consider the fluctuations
in the magnetic vector ( �m = �M − �M0) and the electric
polarization ( �p = �P − �P0) with respect to their equilibrium
values. Further, these excitations are coupled to the y-
component of the electromagnetic field (Ey), propagating
along the x-direction ((E, P ‖ b) and (k, q ‖ a)) (see figure 1).
This is taken care of by Maxwell’s equations since its electric
field component Ey excites polarization along the y-direction.
Thus, Maxwell’s equations and the equations of motion both,
in the linear approximation, give rise to a coupled set of
equations for py and m y which are written as,

λ p̈y + δ1 ṗy + δF

δpy
= 0 μm̈ y + δ2ṁ y + δF

δm y
= 0, (7)
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Figure 1. Light interaction with electromagnons and spin ordering in
the cycloidal phase in CoCr2O4.

where μ and λ are the density parameters which characterize
the kinetic energy of the system. In the limit of no damping
(δ1 = 0 = δ2), these equations can explicitly be written as

λ p̈y + bpy − Ey − ν(Mx0∂xm y − m y∂x Mx0) = 0

μm̈ y + (a + uM2
x0 + uM2

z0 − γ1∂
2
x + α∂4

x )m y

+ ν(2py∂x Mx0 + Mx0∂x py) = 0.

(8)

In order to obtain the modes of excitations, these equa-
tions are solved in Fourier space and are taken to be
m y(x, t) = ∑

l ml exp[i{(lk + q)x −ωt}] and Ey(py)(x, t) =
E0(p0) exp[i(qx − ωt)]. Here, q is the wavevector associated
with the electromagnetic field propagation and is assumed to be
much smaller than that of the wavevector of the magnetic order
parameter which has sinusoidal variation (q � k). In such
an approximation, the higher harmonics in l except the first
one can be neglected. Moreover, using Maxwell’s equation,
E0 can be eliminated from the above equation by using the
relation, 4πp0 = E0(n2 − 1), n(= qc/ω) being the refractive
index of the material. Thus, the above equation can be reduced
to a coupled equation in terms of the electric and magnetic
eigenvectors p0, m1, and m−1 as

( B −iDk −iD−k

iD−k −R L+
iDk L− −R

)( p0

m−1

m1

)
=
( 0

0
0

)
, (9)

where, B = λω2 − b + 4π/(n2 − 1), L± = μω2 − a − γ1(q ±
k)2−α(q±k)4−uM2

1 /2−uM2
3 , Dk = νM1(k−q/2), and R =

uM2
1 /4. As, already mentioned above, q � k, we take q = 0

(optic modes only), which simplifies the above parameters as
D−k = −Dk , L+ = L− and m−1 = −m1. Thus, the above
equation simplifies to a 2×2 matrix equation in terms of p0 and
m(m = m1 = −m−1) whose solution is obtained by solving
the determinant. These yield the energies/frequencies of new
q = 0 coupled modes of excitations called electromagnons

which are given as

ω2
1,2 = 1

2

[
(ω2

p + ω2
0) ∓

(
(ω2

p − ω2
0)

2 + 8k2ν2 M2
1

λμ

) 1
2
]
,

and the corresponding longitudinal modes given as


2
1,2 = 1

2

[
(
2

p + ω2
0) ∓

(
(
2

p − ω2
0)

2 + 8k2ν2 M2
1

λμ

) 1
2
]
,

where ω0 and ωp are, respectively, the magnetic and dipole

frequencies defined as ω2
0 = 69γ 2

0
49μα0

[T − Tl + 224γ1k2ν2

γ0ub ] −
72γ0γ1/7α0, ω2

p = b/λ, and 
2
p = (b + 4π)/λ. It should

be noted here that the magnetic frequency ω0 depends on
temperature and it takes the lowest value at T = Tl .

It is clear from the expression of electromagnon energies
ω1 and ω2 that they are independent of the ferromagnetic
component of magnetization. This is a surprising result and is
in accordance with the work of Zhang et al [10]. This looks
similar to that of electromagnons in RMnO3 materials even
though the origins of temperature dependence are different.
Such a phenomenon can be understood from the consideration
of the free energy. Since the free energy does not contain a
spin/lattice anisotropic term, M3 is canceled and disappears
from the expression of the electromagnon energy, and hence
is independent of M3. However, we believe that, in the
presence of lattice/spin anisotropies, ω1,2 will depend on the
ferromagnetic component of the magnetization.

3. Dielectric function and fluctuation specific heat
capacity

The frequency and temperature dependent dielectric function
(ε(ω, T )) (which is the square of the refractive index n) in such
a formulation is calculated as

ε(ω, T ) = (ω2 − 
2
1)(ω

2 − 
2
2)

(ω2 − ω2
1)(ω

2 − ω2
2)

. (10)

This result looks similar to the polariton problem in
conventional ferroelectrics where the longitudinal and the
transverse optic mode frequencies appear as zeroes and poles,
respectively, in the frequency dependent dielectric function.
One of the transverse optic modes softens toward the phase
transition and is condensed according to the Lyddane–Sachs–
Teller (LST) relation [18] where the static dielectric function
diverges. This conventional viewpoint is not relevant in the
case of multiferroics since the lattice displacement is not
essential to the electronic polarization. It is the electromagnon
mode, which is the outcome of the ME coupling, that goes soft
at T = Tl . This further causes divergence in the imaginary part
of the dynamic dielectric function, which becomes the origin
of ferroelectricity in these systems.

Considering the long wavelength fluctuations in the order
parameter and using the standard phenomenology of Gaussian
theory [19], we computed the fluctuation specific heat capacity
in our model, which turns out to be

�Cflu
P = −KBT

π2
[I1 − I2], (11)
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Figure 2. Temperature variation of change in specific heat �CP/T
versus T (data are taken from [8]).

where

I1 = 2
∫ qmax

0
{(γ0q2 + α0q4)q2 dq}

×
{

a + γ1q2 + (γ0q2 + α0q4)(T − Tl)

+ 3

2

(
γ1q2 + γ1α0

γ0
q4

)(
1 + 2k2ν2

ub

)}−1

(12)

and

I2 = T
∫ qmax

0
{(γ0q2 + α0q4)2q2 dq}

×
{

a + γ1q2 + (γ0q2 + α0q4)(T − Tl)

+ 3

2

(
γ1q2 + γ1α0

γ0
q4

)(
1 + 2k2ν2

ub

)}−2

. (13)

Here we have neglected the higher order terms in M such as
M4 . . ., etc. The above integrals are evaluated near T = Tl

and the computed �Cflc
P is compared with the experimental

observations.

4. Results and discussion

In the present paper for CoCr2O4 which has ferrimagnetic
order along with antiferromagnetic spiral order, we start
with a magnetic order parameter �M = m1ê1 cos(�k · �r) +
m2ê2 sin(�k · �r) + m3ê3 and an antisymmetric magnetoelectric
coupling and conclude that the contribution of m3 to the
dielectric constant and electromagnons is negligible. This is
in accordance with the magnetocapacitive measurements on
CoCr2O4 where the dielectric constant is found to be strongly
coupled to the spiral magnetic order parameter but insensitive
to the ferrimagnetic component [20]. Thus for the study of
dielectric constant and electromagnons CoCr2O4 is analogous
to TbMnO3 which has antiferromagnetic spiral ordering with
no ferromagnetic component. A brief introduction to low
frequency electromagnons in TbMnO3 is given below.

A Raman scattering experiment on TbMnO3 reveals
(i) two peaks (at 30 and 60 cm−1) with electric field E ‖ a and
(ii) one peak (30 cm−1) with E ‖ c in the cycloidal phase [21].

Figure 3. Temperature variation of the imaginary part of the
dielectric function at ω = 0.6 cm−1 (in arbitrary units) (data are
taken from [8]).

The (ii) case can be associated with the antisymmetric part of
the magnetoelectric effect and can be well described by the
Dzyaloshinskii–Moriya (DM) interaction. Here the selection
rule is q = 0, E ‖ c, p ‖ c. The (i) case, however, is associated
with both the symmetric (leading role) and antisymmetric
magnetoelectric coupling [22]. The 60 cm−1 peak is assigned
to be the ‘zone-edge magnon’ mode. The origin of the
30 cm−1 peak is more tricky. It might be assigned to the
zone-center magnon mode. A recent model based on cross-
coupling between magnetostriction and spin–orbit interaction
can explain both the peaks at 30 and 60 cm−1 [23]. In this
model the 30 cm−1 is not connected to the zone-center magnon
mode but corresponds to an excitation combining the zone-
edge magnon wavevector and twice the cycloid wavevector.

Keeping the data of TbMnO3 in mind, we begin with
the idea that there must be an electromagnon mode emerging
from the rotation of the spiral plane. Since there is a
lack of experiments on optical studies of CoCr2O4 we take
experimental input from the temperature dependence of the
imaginary part of the dielectric function and specific heat [8]
and find a peak in the frequency dependence of the imaginary
part of the dielectric function, the selection rule for which
is q = 0; E ‖ b; P ‖ b. This mode is the ‘zone-center
magnon mode’ and is comparable to the 30 cm−1 peak with
E ‖ c. More peaks with different selection rules can be
observed if one employs the symmetric magnetoelectric effect
in the theory [24–26].

In the computation of the fluctuation specific heat the
following parameters (a/μ = 1.0 × 10−5, γ0γ1

α0μ
= 250 cm−2,

γ 2
0

α0μ
= 66 cm−2 K−1, k2ν2

ub = 0.124) are used such that it fits the
data [8] very well (figure 2). In addition to this, the magnetic
and lattice frequencies (ω2

p = 6400 cm−2, 
2
p = 8000 cm−2,

ω2
0(T = 20 K) = 531 cm−2) are used to compute the

imaginary part of the temperature dependent dielectric function
which shows a broad peak at T = Tl (figure 3). In computing
this we use a width parameter η = 11.0 cm−1 in the dielectric
function by letting ω → ω + iη. The variation of the dielectric
function with respect to ω at T = 20 K also has been shown in
figure 4.
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Figure 4. Variation of the imaginary part of the dielectric function
(in arbitrary units) with frequency at temperature T = 20 K.

Figure 5. Variation of electromagnon frequencies ω1 and ω2 with
temperature showing the soft mode.

A general discussion on the computed electromagnons is
in order. The electromagnon modes ω1 and ω2 obtained in this
formulation are nothing but composites of magnetic and lattice
modes. The role of ME coupling is to lower the frequency of
the magnetic modes (ω0) to ω1 whereas it pushes up the lattice
mode (ωP ) to ω2. The interaction between the electromagnon
modes and that of electromagnetic radiation becomes very
strong near the frequencies ω1 and ω2. The nature of the
ω1 mode is mostly dominated by the magnetic one so that
it becomes soft at T = Tl and gives rise to multiferroicity
whereas the ω2 mode is dominated by the lattice mode, which
is almost temperature independent. Moreover, ω2 is always
larger than ω1. The softening of the ω1 mode as well as the
dispersion of both the modes discussed above are shown in
figures 5 and 6. The dispersion of the electromagnon here is
an artifact of coupling to light. Thus, most of the low energy
optical excitation occurs near ω1. It is obvious that the low
energy physics in these systems will be dominated by ω1-
excitations.

In conclusion, we briefly summarize the main results of
the paper. We considered free energy which lacks spin and
lattice anisotropies, minimized it and obtained the required
magnetic phases, that is a conical spin density wave and a

Figure 6. The electromagnon dispersion curve.

low temperature conical cycloid state. A detailed version of
it was given in recent papers by Zhang et al [10, 11]. Using
the equations of motion, the nature of the excitation spectrum
(electromagnons) was studied. It was shown that one of the
electromagnons goes soft at T = Tl and is responsible for
multiferroicity. The temperature dependent dielectric function
as well as the fluctuation specific heat capacity was computed
and compared with the experimentally observed spectrum.
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